Effects of flow direction on dynamic response and stability of nonhumidification PEM fuel cell
Wonseok Yang,
Dowon Cha and
Yongchan Kim
Energy, 2019, vol. 185, issue C, 386-395
Abstract:
The flow directions of reactants in the anode and cathode channels have considerable impact on the dynamic responses of the nonhumidification polymer electrolyte membrane fuel cells (PEMFCs). In this study, the dynamic responses of nonhumidification PEMFCs using short-side-chain membranes are investigated with the variation in the flow direction of reactants using a three-dimensional transient simulation model. The dynamic responses of the cell voltages and local transfer currents are analyzed with the abrupt increase in the current density. Generally, the counter-flow cell exhibits a higher performance than the co-flow cell. During the load change, the co-flow cell experiences zero-power periods owing to the low cell voltage. Moreover, the counter-flow cell shows more uniform variation in the local transfer current and yields an even distribution in the overshoot compared to the co-flow cell owing to the higher membrane water content and the lower ionic resistance. However, the counter-flow cell results in a longer settling time compared to the co-flow cell owing to the large increase in the membrane water content. Overall, for the nonhumidification PEMFCs, the counter-flow cell is determined to be a preferred flow design owing to the higher performance and stability.
Keywords: PEMFC; Nonhumidification; Flow direction; Dynamic response (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544219314124
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:185:y:2019:i:c:p:386-395
DOI: 10.1016/j.energy.2019.07.073
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().