Combined methane reforming with a mixture of methane combustion products and steam over a Ni-based catalyst: An experimental and thermodynamic study
Dmitry Pashchenko
Energy, 2019, vol. 185, issue C, 573-584
Abstract:
Combined methane reforming with a mixture of methane combustion products and steam over a commercial Ni-based catalyst is studied both experimentally and theoretically. The 7-holes cylinder of NiO-αAl2O3 catalysts is used as the pellets. The thermodynamic analysis of the reforming process was carried out by total Gibbs free energy minimization to determine the maximum achievable methane conversion in the reformer. The reforming performances were determined for various amount of extra steam in inlet reaction mixture (from 0 to 2 mol of H2O per mole of CH4). The methane conversion is increasing when steam is added to the reaction mixture at a fixed temperature. The methane conversion reaches a maximum value (about 1) at the temperature range above 800∘C. Based on experimental results, the approximation functions of the methane conversion versus the residence time for the various temperatures and methane-to-oxidizer ratio were obtained. The methane conversion reaches the value that is close to equilibrium at the residence time above 4.0 kgcat⋅s/mol. The effect of pressure (in the pressure range from 1 to 5 bar) on methane conversion is insignificant and is no more than 1–2%. The values of the methane conversion can be used for the energy analysis of the thermochemical recuperation system by methane reforming with steam and flue gases.
Keywords: Catalyst; Methane reforming; Experiment; Methane conversion; Syngas production (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (9)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544219314045
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:185:y:2019:i:c:p:573-584
DOI: 10.1016/j.energy.2019.07.065
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().