The effects of compressibility of natural gas hydrate-bearing sediments on gas production using depressurization
Xiang Sun,
Yanghui Li,
Yu Liu and
Yongchen Song
Energy, 2019, vol. 185, issue C, 837-846
Abstract:
Natural gas hydrate is a new alternative energy that has attracted global attention in recent years. Depressurization is considered a fundamental method of producing natural gas from gas hydrate-bearing sediments (GHBSs). However, soil compaction during depressurization is a significant problem for production efficiency and safety. The compressibility of soil affects the hydrate dissociation in the coupled process of heat transfer, fluid flow, and soil compaction. In this study, a fully coupled Thermo-hydro-chemo-mechanical (THCM) model is applied to simulate Masuda's core-scale gas production experiments. The effects of compressibility on the changes in gas production rate, pore pressure, temperature, hydrate saturation, permeability, and heat conductivity are investigated by varying the parameters governing compressibility including the bulk modulus of host sediments and hydrate-enhanced bulk modulus. The results show that the higher compressibility corresponds to a larger reduction in porosity further impacting the variation in effective permeability, heat conductivity, and heat convection during depressurization. In Masuda's test, the pressure changes indicate that the soil compaction might occurs during depressurization. Because the real field production is implemented under confining condition, Masuda's test should be developed to consider the compressibility of GHBSs.
Keywords: Gas production; Depressurization; Hydrate dissociation; Compressibility (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (29)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544219314495
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:185:y:2019:i:c:p:837-846
DOI: 10.1016/j.energy.2019.07.108
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().