EconPapers    
Economics at your fingertips  
 

“LiCl/vermiculite - Methanol” as working pair for adsorption heat storage: Adsorption equilibrium and dynamics

Alexandra Grekova, Svetlana Strelova, Larisa Gordeeva and Yuri Aristov

Energy, 2019, vol. 186, issue C

Abstract: Adsorption heat storage (AHS) is an energy-saving technology that allows low-temperature heat from renewable energy sources and various wastes to be utilized. One of the most important ways to increase the efficiency of the AHS units is to develop adsorbents with high heat storage density. This work addresses the methanol sorption on an innovative composite based on expanded vermiculite impregnated with LiCl (LiCl/Verm), which is suggested for adsorptive cycles for seasonal heat storage. Such a cycle is typical of regions with moderately cold winter, like the South of the Russian Federation as well as the Northern part of China, Europe etc. The study consists of: (1) synthesis and characterization of the composite; (2) investigation of equilibrium and dynamics of methanol sorption under operating conditions of the seasonal AHS cycle; (3) evaluation of the sorbent heat storage capacity and specific power. The heat storage capacity of LiCl/Verm under conditions of the tested cycle reaches 1.5 kJ/g. This value far exceeds that for conventional and innovative adsorbents. The specific power of 0.9 and 1.5 kW/kg can be realized during discharging and charging stages of the cycle, respectively. These findings demonstrate a high potential of the LiCl/Verm composite as methanol sorbent for AHS.

Keywords: Adsorption heat storage; Composite sorbent salt/matrix; Lithium chloride; Expanded vermiculite; Methanol (search for similar items in EconPapers)
Date: 2019
References: Add references at CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S036054421931446X
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:186:y:2019:i:c:s036054421931446x

DOI: 10.1016/j.energy.2019.07.105

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:186:y:2019:i:c:s036054421931446x