Sinusoidal alternating current heating strategy and optimization of lithium-ion batteries with a thermo-electric coupled model
Junqiu Li,
Danni Sun,
Zhixiong Chai,
Haifu Jiang and
Chao Sun
Energy, 2019, vol. 186, issue C
Abstract:
In order to solve the application bottleneck of electric vehicles in alpine-cold regions, sinusoidal alternating current heating becomes a competitive method. A novel thermo-electric coupled model for lithium-ion power batteries at low temperatures is proposed in this paper. The model combines the thermal model with the electrochemical impedance model. Model parameters are identified by genetic algorithm through programming in MATLAB. Plenty of experiments have validated the model and explored the influence factors of the heat generation effect. It is found that as the battery temperature increases, the optimal current amplitude increases gradually, whereas the optimal current frequency decreases. Therefore, an original temperature dependent control approach of sinusoidal alternating current heating is proposed and the strategy is optimized by sequential quadratic programming algorithm, considering safe operating voltage constraints. The optimal frequency range is distributed in the high frequency region, which makes the allowable safe current larger and thus gives a larger heat generation rate, and lithium ion deposition does not occur. Finally, the optimized heating strategy is verified by experiments. Results show that the battery module can achieve a temperature rise from −20 °C to 0 °C in 520 s, with an average temperature-rise 2.31 °C/min.
Keywords: Lithium-ion battery; Sinusoidal alternating current heating; Thermo-electric coupled model; Strategy and optimization (search for similar items in EconPapers)
Date: 2019
References: Add references at CitEc
Citations: View citations in EconPapers (7)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544219314707
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:186:y:2019:i:c:s0360544219314707
DOI: 10.1016/j.energy.2019.07.128
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().