EconPapers    
Economics at your fingertips  
 

Parametric study on mixing augmentation mechanism induced by air injection in a shock-induced combustion ramjet engine

Zhao-bo Du, Wei Huang and Li Yan

Energy, 2019, vol. 186, issue C

Abstract: The fuel-air mixing process plays an important role in the shock-induced combustion ramjet (shcramjet) engine. In the current study, the investigation of front fuel jet and rear air jet is provided in order to study the mixing effect induced by the air jet and reveal the mixing augmentation mechanism and formation of several recirculation zones. Some parameters are also provided to evaluate the flow field properties quantitatively, namely the mixing efficiency, the total pressure recovery coefficient, the fuel penetration depth and the mixing length. The obtained results predicted by the three-dimensional Reynolds-average Navier-Stokes (RANS) equations coupled with the two equation shear stress transport (SST) k-ω turbulence model show that the additional air jet is really beneficial for accelerating the mixing process and improving the mixing efficiency. The shear vortex and air injected are the key sources for the mixing enhancement mechanism of the dual injection strategy. The formations of recirculation zones midstream and downstream are provided as well. The midstream recirculation zone “R2” is related to both front fuel jet and rear air jet, and “R3” is related to the air jet only. The downstream recirculation zone1 is composed by flows from the fuel jet and the air jet, and the downstream recirculation zone2 is formed by hydrogen flows.

Keywords: Dual jet; Air injector; Recirculation zone; Mixing efficiency; Shock-induced combustion ramjet engine; Supersonic flow (search for similar items in EconPapers)
Date: 2019
References: Add references at CitEc
Citations: View citations in EconPapers (5)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544219315737
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:186:y:2019:i:c:s0360544219315737

DOI: 10.1016/j.energy.2019.115895

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:186:y:2019:i:c:s0360544219315737