EconPapers    
Economics at your fingertips  
 

A comprehensive thermodynamic analysis of a novel CHP system based on SOFC and APC cycles

Samareh Ahmadi, Hadi Ghaebi and Afshar Shokri

Energy, 2019, vol. 186, issue C

Abstract: A novel combined system driven by SOFC is proposed in this paper. The presented system is an integration of SOFC, modified APC, and DHW systems, which is designed in two different configurations for heating and power generation aims. To illustrate the practicability of the suggested systems, the energy and exergy analysis are carried out. The results of the modeling reveal that the combination of SOFC-APC-DHW results in an enhancement in the energy efficiency from 47.78% to 60.05% compared to standalone SOFC cycle. The exergy efficiency is also enhanced from 46.09% to 49.58% for the SOFC-APC-DHW arrangement. Moreover, the APC net power and DHW heating load are obtained 54.06kW and 162.9kW for the SOFC-APC-DHW case. Among all components, preheater 3 (PH3) holds approximately 25% of total exergy destruction rate, and SOFC stack contributes to about 17% of the total exergy destruction. Furthermore, a parametric study is performed to inspect the effect of various thermodynamic parameters on the significant criteria. According to the parametric study, it resulted that higher energy efficiency is obtainable by increasing the generator pressure and absorber LiBr fraction or by decreasing absorber temperature and steam to carbon ratio. Moreover, the exergy efficiency of the system can be enhanced by reducing the current density of the SOFC system, compressor pressure ratio, steam to carbon ratio, and absorber temperature.

Keywords: Combined system; SOFC; APC; Thermodynamic analysis; DHW (search for similar items in EconPapers)
Date: 2019
References: Add references at CitEc
Citations: View citations in EconPapers (45)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544219315774
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:186:y:2019:i:c:s0360544219315774

DOI: 10.1016/j.energy.2019.115899

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:186:y:2019:i:c:s0360544219315774