A series of methods for investigating the effect of a flow improver on the asphaltene and resin of crude oil
Hongping Quan,
Pengfei Li,
Wenmeng Duan,
Liao Chen and
Langman Xing
Energy, 2019, vol. 187, issue C
Abstract:
With the increasing of oil demand and the decreasing of conventional crude oil production, unconventional crude oil is gaining interest. A flow improver (FI) was synthesized and designed a series of methods for investigating the effect of the flow improver on the asphaltene and resin of two unconventional crude oil samples. Changes in the morphology of the solid samples, as determined by scanning electron microscopy. n-Heptane and alcohol were selected as poor solvents for asphaltene and resin, respectively, to prepare solution samples of different concentrations. The precipitation tendency was judged according to the color change of the solution. Fluorescence microscopy was used to observe the changes in the aggregation morphology of the solution samples before and after FI addition. Solid samples and solution samples were tested by XRD and UV spectrophotometry, respectively. The results consistently showed that the effect of FI on resin was better than that on asphaltene. The effect of asphaltene and resin on the viscosity of crude oil was investigated through the series of studies.
Keywords: Asphaltene; Resin; Flow improver; Effect; Design method (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (6)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544219315440
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:187:y:2019:i:c:s0360544219315440
DOI: 10.1016/j.energy.2019.115872
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().