EconPapers    
Economics at your fingertips  
 

Optimal synthesis of negative emissions polygeneration systems with desalination

Raymond R. Tan, Kathleen B. Aviso, Dominic C.Y. Foo, Jui-Yuan Lee and Aristotle T. Ubando

Energy, 2019, vol. 187, issue C

Abstract: Treatment of reverse osmosis desalination (ROD) brine has recently been suggested as a means to achieve negative greenhouse gas emissions via indirect ocean capture (IOC) of carbon dioxide. In this paper, a novel scheme that integrates the ROD/IOC process with combined cooling, heating, and power (CCHP) generation is proposed as a new negative emissions polygeneration system (NEPS). A mixed integer linear programming (MILP) model is then developed for the optimal synthesis and operation of such a system. The model uses a multi-period formulation to account for hourly variations in product demand and electricity price. The polygeneration system takes advantage of the flexible operation of the ROD/IOC process to operate as a Power-to-X (PtX) system, without the need for direct electricity storage in batteries. An illustrative case study is solved to demonstrate the model, and sensitivity analysis is performed to assess the effects of techno-economic uncertainties on system performance.

Keywords: Polygeneration; Negative emissions technology; Carbon dioxide removal; Indirect ocean capture; Power-to-X; Optimization (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544219316433
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:187:y:2019:i:c:s0360544219316433

DOI: 10.1016/j.energy.2019.115953

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:187:y:2019:i:c:s0360544219316433