Effect of velocity non-uniformity of supply air on the mixing characteristics of push-pull ventilation systems
Yi Wang,
Mengfan Quan and
Yu Zhou
Energy, 2019, vol. 187, issue C
Abstract:
The aim of this paper is to investigate the effect of the supply air velocity profile and direction on the mixing characteristics of push-pull ventilation systems. An experiment was set up to validate the numerical simulation. Then, numerical simulations were performed to investigate five velocity profile models (uniform, parabolic, linear-down, linear-up and side) and four flow direction models. Mixing fraction ε and mixing rate‾ε were proposed as evaluating indexes of the mixing amount of ambient air. The simulation results indicated that the mixing fraction distribution can visually show the mixing characteristics of the ambient air under different air supply conditions. Secondly, when there is airflow escape at the pull hood, the effect of the supply air velocity profile and direction on the mixing amount should be taken seriously. On the other hand, when there is no airflow escape, the mixing amount along the flow path increases linearly, and the effect of the velocity profile and direction on the mixing amount is small. Finally, the mixing amount along the flow path has a minimum value at a certain flow ratio. The results of the present study have certain guiding significance for the design of push-pull ventilation systems.
Keywords: Velocity profile; Supply air direction; Flow ratio; Push-pull ventilation system (search for similar items in EconPapers)
Date: 2019
References: View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544219316524
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:187:y:2019:i:c:s0360544219316524
DOI: 10.1016/j.energy.2019.115962
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().