Integration of liquid air energy storage into the spanish power grid
Mathieu Legrand,
Luis Miguel Rodríguez-Antón,
Carmen Martinez-Arevalo and
Fernando Gutiérrez-Martín
Energy, 2019, vol. 187, issue C
Abstract:
The European energy transition implies a relevant increase of renewable energies in the electric power generation mix. Integrating additional renewables is becoming more challenging due to their variability. Spain's peninsular situation aggravates this problem because it is an electric island. Within this framework, Liquid Air Energy Storage (LAES) is a promising technology for balancing the power grid. This work proposes a transient thermodynamic modelling of a 100 MW LAES plant. The cycle incorporates a packed-bed cold-storage system to enhance the charge/discharge efficiency. The appearance of a thermocline in the cold-storage unit is relevant regarding the round-trip efficiency. An economic study based on the simulation results is performed considering different scenarios of renewables grid penetration (photovoltaic and wind power). Depending on the installed LAES capacity, the levelized cost of delivered energy is evaluated. The results suggest that it is more interesting to store photovoltaic energy in the daytime peak hours and release energy during the night-time valleys to maximize the use of storage plants. This allows the levelized cost of energy and storage to be reduced to values as low as 150 and 50 €/MWh respectively. These prices are competitive with compressed air energy storage and even with pumped-hydro storage.
Keywords: Renewable energy; Liquid air energy storage (LAES); Round-trip efficiency; Power grid balance; Levelized cost of storage (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (22)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S036054421931655X
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:187:y:2019:i:c:s036054421931655x
DOI: 10.1016/j.energy.2019.115965
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().