EconPapers    
Economics at your fingertips  
 

Design and optimization of novel dehumidification strategies based on modified nucleation model in three-dimensional cascade

Guojie Zhang, Xinzhe Zhang, Fangfang Wang, Dingbiao Wang, Zunlong Jin and Zhongning Zhou

Energy, 2019, vol. 187, issue C

Abstract: To decrease the wetness loss and increase the efficiency in nuclear plant steam turbine, several novel dehumidification strategies are presented in this paper and the dehumidification effect is tested. The modified nucleation model is built firstly, and the accuracy of the modified nucleation model combined with several droplet growth models is investigated and discussed. Secondly, the non-equilibrium condensation (NQC) characteristics in Dykas cascade are studied, the relationship among the parameters is obtained. Secondly, five novel dehumidification strategies are presented, and the dehumidification effect is evaluated. With the passage layer increasing, the ability of the wetness loss reduction is gradually enhanced. When the passage layer increases to 5, the wetness loss is reduced to 1.15 kJ/kg, but which is at the cost of reducing the blade strength. And the LNB_LNE_LWC is the best choice by balancing the dehumidification effect and the blade strength, succeeding in reducing the wetness loss to 1.42 kJ/kg. At last, the NQC characteristics in three-dimensional cascade are investigated numerically, the structure dehumidification effect with different passage layers is evaluated in detail. The results in this paper can give a scientific basis and reference for the design and optimization of the dehumidification strategy in nuclear plant steam turbine.

Keywords: Three-dimensional cascade; Modified nucleation model; Non-equilibrium condensation; Dehumidification strategy optimization; Wetness loss; Combined method (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (10)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544219316767
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:187:y:2019:i:c:s0360544219316767

DOI: 10.1016/j.energy.2019.115982

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:187:y:2019:i:c:s0360544219316767