Optimization based higher order sliding mode controller for efficiency improvement of a wave energy converter
R. Suchithra,
K. Ezhilsabareesh and
Abdus Samad
Energy, 2019, vol. 187, issue C
Abstract:
This paper deals with the efficiency maximization of a wave energy converter (WEC). The WEC is an oscillating water column (OWC) device and drives a permanent magnet synchronous generator (PMSG) through a bidirectional flow impulse-turbine. The converter faces challenges such as large peak-to-average power ratio, low overall efficiency, and inefficient energy absorption for regular and irregular sea states. In this context, a higher order sliding mode controller (HOSMC) was proposed, and its gains were optimized to control through the best efficiency point tracking (BEPT) of the turbine. The flow through the turbine-passage was simulated by the computational fluid dynamics (CFD) technique, and the BEPT characteristics were obtained. An adaptive inertia-weight particle-swarm algorithm and a grouped grey-wolf algorithm were used for optimization. The Optimized HOSMC reduced chattering, minimized the reaching time and improved the mean efficiency by about 67% compared to the uncontrolled cases. In addition, the relative improvement of the mean efficiency was at least 4.8% compared to conventional controllers. The controller reduced the peak-to-average power ratio of at least 35.6% relative to the uncontrolled case of the turbine under different sea states.
Keywords: Oscillating water column; Bi-directional impulse turbine; Permanent magnet synchronous generator; Higher order sliding mode controller; Grouped grey-wolf optimization (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544219318067
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:187:y:2019:i:c:s0360544219318067
DOI: 10.1016/j.energy.2019.116111
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().