Key issues and novel optimization approaches of industrial waste heat recovery in district heating systems
Jingyi Wang,
Zhe Wang,
Ding Zhou and
Kaiyu Sun
Energy, 2019, vol. 188, issue C
Abstract:
Large amount of low-grade waste heat is discharged into the environment during industrial processes. This part of waste heat can be collected to serve district heating systems as an important heat source. In most studies of industrial waste heat recovery, the proposed system simulations were unsophisticated in terms of analyzing the real processes. For this reason, the tangency analysis has recently been proposed, and it has been found effective in conducting optimization analysis for direct-heat-exchange systems with multi-heat sources. However, in this study, it has been found that the tangency method has limitations in designing systems with heat pumps, and therefore the disadvantages of tangency analysis are suggested and discussed. Exergy analysis reveals that without considering additional exergy generated by heat pumps, the systems designed by tangency technology tend not be the optimal configuration when heat pumps are employed. In this study, the process optimization principles have been developed from the exergy analysis of heat recovery systems with heat pumps. The optimization principles and mean-heat-transfer-times index are proposed as the key point of process design. Based on the principles, two specific optimization methods in graphic expression are suggested. In the case studies, energy input decreased by more than 70%, which compares favorably with that of tangency analysis.
Keywords: Industrial waste heat recovery; Optimization; Exergy analysis; District heating; Heat pumps (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (10)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544219316998
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:188:y:2019:i:c:s0360544219316998
DOI: 10.1016/j.energy.2019.116005
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().