EconPapers    
Economics at your fingertips  
 

Unscented Kalman Filter based interval state estimation of cyber physical energy system for detection of dynamic attack

Huaizhi Wang, Anjian Meng, Yitao Liu, Xueqian Fu and Guangzhong Cao

Energy, 2019, vol. 188, issue C

Abstract: Information and communication technologies (ICTs) introduce many Internet-based entry points that pose potential risks to cyber physical energy system (CPES). Therefore, it is significant to enhance the cybersecurity of CPES from cyber-attacks. In this paper, a new dynamic attack model that takes into account the dynamic characteristics of energy systems is developed based on traditional false data injection attack. The proposed attack model can be used to describe the attack behaviors of a malicious attacker over time. Then, we propose a new generalized interval state estimator to quantify the normal fluctuations of all CPES state variables. In this state estimator, the Unscented Kalman Filter (UKF) is used to predict the real-time operating level of the state variables. Copula theory is introduced to model the prediction uncertainty of sustainable energy and load as a set of conditional quantiles. We then model the normal fluctuation range of each CPES state as a bilevel nonlinear programming problem based on the worst case analysis. Consequently, an anomaly detection method is developed to detect whether there is an attack or not in the CPES. In this method, any state variable that falls outside its estimated interval is considered an abnormal point. Finally, the feasibility of the dynamic attack model and the effectiveness of the anomaly detection method have been extensively validated on test systems in power and energy society of the Institute of Electrical and Electronics Engineers (IEEE).

Keywords: Cyber physical energy system; Energy system state estimation; Attack detection; Dynamic attack; Smart grid (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (6)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S036054421931730X
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:188:y:2019:i:c:s036054421931730x

DOI: 10.1016/j.energy.2019.116036

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:188:y:2019:i:c:s036054421931730x