EconPapers    
Economics at your fingertips  
 

Microstructure evolution and controlled hydrolytic hydrogen generation strategy of Mg-rich Mg-Ni-La ternary alloys

Xiaojiang Hou, Yi Wang, Yanling Yang, Rui Hu, Guang Yang, Lei Feng and Guoquan Suo

Energy, 2019, vol. 188, issue C

Abstract: As-cast (Mg-10Ni)1-x-Lax (x = 0, 5, 10, 15 wt%) ternary Mg-rich alloys with different La contents are successfully prepared by the flux protection melting method. The mechanism of hydrolysis hydrogen generation is investigated in combination with the phase compositions, microstructures, electrochemical properties and hydrolysis hydrogen generation properties. The results show that with the increase of La, the electrochemical activity increase, while the eutectic microstructure decreases. When adding 10 wt% and 15 wt% La, the Mg17La2 active intermediate phase is observed. In corrosive weak acid medium, the (Mg-10Ni)90La10 (10La) alloy presents the best hydrogen generation performance, while in the neutral distilled water medium, the (Mg-10Ni)85La15 (15La) alloy performs well. The initial hydrolysis reaction kinetics of Mg-Ni-La alloys in distilled water is mainly controlled by the electrochemical activity of the alloy. While, it is mainly determined by the mass transfer channels formed in the microstructures when in weak acid medium. The mechanism of hydrolysis hydrogen generation and the controlled hydrolytic hydrogen generation strategy of Mg-Ni-La alloys proposed in this work provide possible technical guidance to prepare Mg-based hydrogen generation alloys with high reaction activity, high hydrogen generation yield and controlled hydrolysis kinetics.

Keywords: Hydrogen generation; Mg alloy; Microstructure; Electrochemistry; Hydrolysis mechanism (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544219317761
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:188:y:2019:i:c:s0360544219317761

DOI: 10.1016/j.energy.2019.116081

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:188:y:2019:i:c:s0360544219317761