Energy analysis of a proton exchange membrane fuel cell (PEMFC) with an open-ended anode using agglomerate model: A CFD study
Mirollah Hosseini,
Hamid Hassanzadeh Afrouzi,
Hossein Arasteh and
Davood Toghraie
Energy, 2019, vol. 188, issue C
Abstract:
In this study, a single two-dimensional cell and open-ended anode proton exchange membrane fuel cell (PEMFC) is numerically studied using agglomerate model. The working fluids are considered water and air. The flow has been simulated using the two-phase model to consider the effects of bubble generations in the fuel cell. The numerical results show a better agreement using the agglomeration model with experimental data compared to the other methods. The effects of various parameters including, the stoichiometric coefficient, the amount of saturated water in the cathode gas diffusion layer, operating temperature and pressure, and relative humidity on the fuel cell performance, have been examined. The obtained results revealed that by increasing this coefficient from 1.5 to 2 and 2 to 2.3, the fuel cell output power enhances by 1.68% and 0.53%, respectively. It was also found that increasing the operating pressure has enhanced the mass fraction consumptions of both hydrogen and oxygen. In addition, it was deduced that the maximum local temperature occurs in the middle of the polymer fuel cell. Finally, the numerical results showed that increasing the relative humidity enhances the water formation from cathode to the anode side.
Keywords: Energy analysis; Proton exchange membrane fuel cell; Agglomerate model; CFD study (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (11)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544219317852
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:188:y:2019:i:c:s0360544219317852
DOI: 10.1016/j.energy.2019.116090
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().