EconPapers    
Economics at your fingertips  
 

City type-oriented modeling electric power consumption in China using NPP-VIIRS nighttime stable light data

Shuyi Li, Liang Cheng, Xiaoqiang Liu, Junya Mao, Jie Wu and Manchun Li

Energy, 2019, vol. 189, issue C

Abstract: Accelerating urbanization has created tremendous pressure on the global environment and energy supply, making accurate estimates of energy use of great importance. Most current models for estimating electric power consumption (EPC) from nighttime light (NTL) imagery are oversimplified, ignoring influential social and economic factors. Here we propose first classifying cities by economic focus and then separately estimating each category’s EPC using NTL data. We tested this approach using statistical employment data for 198 Chinese cities, 2015 NTL data from the Visible Infrared Imaging Radiometer Suite (VIIRS), and annual electricity consumption statistics. We used cluster analysis of employment by sector to divide the cities into three types (industrial, service, and technology and education), then established a linear regression model for each city’s NTL and EPC. Compared with the estimation results before city classification (R2: 0.785), the R2 of the separately modeled service cities and technology and education cities increased to 0.866 and 0.830, respectively. However, the results for industrial cities were less consistent due to their more complex energy consumption structure. In general, using classification before modeling helps reflect factors affecting the relationship between EPC and NTL, making the estimation process more reasonable and improving the accuracy of the results.

Keywords: NPP-VIIRS; Electric power consumption; City type; Cluster analysis; Regression model (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: Track citations by RSS feed

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544219317347
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:189:y:2019:i:c:s0360544219317347

DOI: 10.1016/j.energy.2019.116040

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Haili He ().

 
Page updated 2020-05-02
Handle: RePEc:eee:energy:v:189:y:2019:i:c:s0360544219317347