EconPapers    
Economics at your fingertips  
 

The use of compliant surfaces for harvesting energy from water streams

Francisco J. Arias and Salvador De Las Heras

Energy, 2019, vol. 189, issue C

Abstract: The possibility for hydrokinetic energy harvesting from small water streams by using compliant surfaces is considered. The basis of the proposed idea is the deliberate bifurcation of a water stream into two streams separated by a compliant or membrane surface keeping an equalized static pressure in both sides but, however, with a relative velocity between both channels. Then, owing to this relative velocity of the water stream Taylor instabilities appear which set in oscillatory motion the membrane. This motion can be converted into a small electrical output power. Utilizing a linearized flow theory an analytical expression for the attainable power as function of several parameters was derived. Actual experimental investigations were undertaken which show a good agreement with the theoretical predictions. It was found that for a water stream with velocity around 2 m/s an output power around 30 mW/cm 2 of area of the membrane is attainable. Because large areas can be covered inexpensively by the use of membranes, the concept is worthy to be considered for hydropower harvesting in water flows which are not suitable to be turbined either because a reduced pressure or little depth which prevents the use of turbines. Additional R&D is required in order to arrive at a reliable practical and commercial design.

Keywords: Energy harvesting; Residual waters; Waste waters (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544219318092
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:189:y:2019:i:c:s0360544219318092

DOI: 10.1016/j.energy.2019.116114

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:189:y:2019:i:c:s0360544219318092