EconPapers    
Economics at your fingertips  
 

Process engineering strategy for cultivation of high density microalgal biomass with improved productivity as a feedstock for production of bio-crude oil via hydrothermal liquefaction

Gargi Goswami, Ankan Sinha, Ratan Kumar, Babul Chandra Dutta, Harendra Singh and Debasish Das

Energy, 2019, vol. 189, issue C

Abstract: A process engineering strategy was developed for cultivation of high density biomass of Chlorella sp. FC2 with improved productivity under photoautotrophic condition. The process engineering strategy involved a combinatorial approach of: (i) optimization of CO2 concentration in the inlet gas stream & aeration rate; (ii) growth kinetic driven feeding recipe for limiting nutrients; and (iii) dynamic increase in light intensity. The strategy was tested by growing the cells on laboratory grade BG11 medium. With an attempt to reduce the cultivation cost, the growth performance of the organism was then evaluated on commercial grade BG11 medium. Finally, hydrothermal liquefaction was carried out for direct conversion of microalgal slurry into bio-crude oil. Cultivation on laboratory grade BG11 medium resulted in biomass titer and overall productivity of 8.41 g L−1 and 575.9 mg L−1 day−1 respectively. Significant improvement in biomass titer (13.23 g L−1) and overall productivity (731.6 mg L−1 day−1) was observed when grown on commercial grade BG11 medium. Higher fraction of hydrocarbon in the bio-crude oil depicted better oil quality. Thermal gravimetric analysis revealed that maximum distillate fraction lies within the boiling point range of 200–300 °C which is suitable for conversion into diesel oil, jet fuel, and fuel for stoves.

Keywords: Chlorella sp.; Process engineering; Biomass productivity; Hydrothermal liquefaction; Bio-crude; Feeding strategy (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544219318316
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:189:y:2019:i:c:s0360544219318316

DOI: 10.1016/j.energy.2019.116136

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:189:y:2019:i:c:s0360544219318316