Catalytic reforming of biomass pyrolysis tar using the low-cost steel slag as catalyst
Feiqiang Guo,
Shuang Liang,
Xingmin Zhao,
Xiaopeng Jia,
Kuangye Peng,
Xiaochen Jiang and
Lin Qian
Energy, 2019, vol. 189, issue C
Abstract:
In this work, the possibility of steel slag as an effective and low-cost catalyst for the decomposition of biomass pyrolysis tar has been explored based on the high content of iron oxides for sustainable syngas production from biomass. By simple calcination treatment at 800 °C, the loose structure of the steel slag was formed with the main chemical composition of Fe2O3 and MgFe2O4. The steel slag exhibited good catalytic activity on the cracking of biomass pyrolysis tar, and even higher tar conversion efficiency can be obtained by reusing the steel slag, leading to the increase in syngas yield. The presence of additional steam can further promote the tar reforming reactions, leading to the significant increase in H2 and CO. At 800 °C, the tar conversion efficiency reached 94.1% with a high gas yield of 493.5 mL/g. The interaction between steel slag and reductive gases resulted in the reduction of iron oxides into Fe3O4, and more pores were formed for the spent steel slag, which can enhance the contact between active sites and reactants. These characteristics indicate that steel slag has the potential to be used as an efficient catalyst with excellent stability in the long-term biomass tar removal applications.
Keywords: Biomass; Steel slag; Tar removal; Catalytic reforming (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544219318560
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:189:y:2019:i:c:s0360544219318560
DOI: 10.1016/j.energy.2019.116161
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().