Modeling of heat transfer for energy efficiency prediction of solar receivers
J. Zhu,
K. Wang,
Z. Jiang,
B. Zhua and
H. Wu
Energy, 2020, vol. 190, issue C
Abstract:
In this article, a new heat transfer model for solar receivers with metal foam is developed for design optimization. The proposed model facilitates analysis of heat transfer processes in terms of forced convection, natural convection, heat conduction and radiation, accurately predicting the energy efficiency and percentage contribution of each form of heat loss. The results show good agreement between the predicted results and the experimental data. Specifically, sensitivity analysis is performed to predict the energy efficiency of solar receivers under different operating conditions. To explore the influence of inlet temperature, a series of simulations under high inlet temperature are carried out, resulting in poorer energy performance and heavier radiant heat loss. Non-radiant heat loss, however, accounts for less than 1.1% of the total energy loss in all cases. The results reveal that reduction of radiant loss is conducive to energy efficiency improvement.
Keywords: Solar receiver; Modeling; Energy efficiency; Metal foam; Radiation (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544219320675
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:190:y:2020:i:c:s0360544219320675
DOI: 10.1016/j.energy.2019.116372
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().