EconPapers    
Economics at your fingertips  
 

Multi-objective combustion optimization based on data-driven hybrid strategy

Wei Zheng, Chao Wang, Yajun Yang and Yongfei Zhang

Energy, 2020, vol. 191, issue C

Abstract: In order to reduce pollutant discharge and improve boiler efficiency, data-driven hybrid strategy is proposed to solve the problem of multi-objective combustion optimization. First, massive historical operation data of a coal-fired power station are preprocessed (including resampling, steady-state detection, data cleaning and cluster analysis), so as to divide the whole boiler working condition into different partitions. Next, combustion association rules based multi-objective optimal strategy is applied to extract a combustion optimal rule from every partition, and a combustion optimal rule-base is built up by merging all the rules, so that the preliminary combustion optimization can be quickly finished based on the combustion optimal rule-base. Meanwhile, combustion mathematical model based multi-objective optimal strategy is applied to develop the LSSVR (least square support vector regression) model of boiler combustion process for every partition, and a combustion optimal model-base, which contains all the LSSVR models, is built up. After that, an improved multi-objective particle swarm optimization algorithm is presented to calculate Pareto optimal solutions depend on the corresponding LSSVR model with the constraint of real-time boiler working condition. To achieve further combustion optimization, the method of multiple attribute decision making is used to determine the unique solution from all the Pareto optimal solutions. Data-driven hybrid strategy is to combine the above two strategies. Simulation experiments verified the validity and feasibility of data-driven hybrid strategy on multi-objective test function ZDT1. Taking advantage of data-driven hybrid strategy, the comprehensive average of NOx emissions dropped by 29.63% and the comprehensive average of boiler efficiency increased by 0.69% in the application experiments with historical operation data under some boiler working conditions. Data-driven hybrid strategy based multi-objective combustion optimization makes the integration of instantaneity and effectiveness, so that it is suitable for online application.

Keywords: Data-driven; Multi-objective combustion optimization; Association rules; Least square support vector regression; Particle swarm optimization (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544219321735
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:191:y:2020:i:c:s0360544219321735

DOI: 10.1016/j.energy.2019.116478

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:191:y:2020:i:c:s0360544219321735