EconPapers    
Economics at your fingertips  
 

Effect of flame interaction on swirl-stabilized mesoscale burner array performance

Jeongan Choi, Rajavasanth Rajasegar, Constandinos M. Mitsingas, Qili Liu, Tonghun Lee and Jihyung Yoo

Energy, 2020, vol. 192, issue C

Abstract: Individual flames in a swirl-stabilized mesoscale burner array can interact with neighboring flames for optimum burner array operation, particularly at lean equivalence ratios. Understanding these interactions are therefore critical for optimizing the mesoscale burner array. This study probes the effect of burner performance and stability based on experimental data of two burner array configurations (dense and sparse) under steady and acoustic perturbation conditions. First, the dense lean blow off equivalence ratios and flame temperatures were examined. The dense burner array lean blow off limits were 8.8 % lower than the sparse burner array. Maximum flame temperature of the dense burner array was 56.4 K higher compared to its sparse counterpart at the equivalence ratio of 0.65. Second, various flame structures from both mesoscale burner arrays were visualized using OH planar laser induced fluorescence imaging. Results showed that flame structures from the dense mesoscale burner array produced a wider range of stable power outputs. Lastly, proper orthogonal decomposition, phase-averaging, and Rayleigh index-based stability analyses were performed using 10 kHz OH* chemiluminescence imaging. Results showed that the dense mesoscale burner array exhibited better thermal-acoustic damping with smaller heat release fluctuations under acoustic perturbation range from 80 to 270 Hz compared to the sparse mesoscale burner array.

Keywords: Mesoscale burner array; Swirl stabilization; OH planar laser induced fluorescence; OH* chemiluminescence; Rayleigh index; Proper orthogonal decomposition (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544219323564
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:192:y:2020:i:c:s0360544219323564

DOI: 10.1016/j.energy.2019.116661

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:192:y:2020:i:c:s0360544219323564