Drying of untreated Musa nendra and Momordica charantia in a forced convection solar cabinet dryer with thermal storage
K.R. Arun,
G. Kunal,
M. Srinivas,
C.S. Sujith Kumar,
M. Mohanraj and
S. Jayaraj
Energy, 2020, vol. 192, issue C
Abstract:
Drying uniformity and flexibility in product selection are the primary concern for the end-user in solar drying application. Hence, the present work attempts to determine the user flexibility to choose among different agro-products and simultaneously ensure the drying uniformity inside an active multi-tray indirect-mode solar cabinet dryer. The work considers unripe untreated banana and bitter gourd with an average initial moisture content of 180% (db) and 1328% (db), respectively. The present work tries to assess the influence of a tray-sequencing pattern on the drying behavior at different combinations of flake thickness (0.002 − 0.004 m), multi-tray spacing (0.1 − 0.15 m), tray mesh size (0.01 − 0.015 m), and mass flow rate (0.015 − 0.03 kg/s). For all the tested combinations, the proposed tray sequencing aided to achieve drying uniformity for banana flakes within 10 h and bitter gourd by 18 h. Energy utilization ratio (45.3% − 47.9%) and exergy loss decreased with an increase in mass flow rate. Among the tested combination, 0.03 kg/s, 0.002 m thickness, 0.15 m spacing, and 0.01 m mesh size resulted in higher average energy efficiency (15.34%), and exergy efficiency (60.3 − 94.1%). Further investigations on the proposed dryer are essential to bring out a suitable standardization to attain an upper limit among the agro-products.
Keywords: Agro-products; Energy storage; Indirect-mode drying (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (6)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544219323928
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:192:y:2020:i:c:s0360544219323928
DOI: 10.1016/j.energy.2019.116697
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().