Thermal management evaluation for advanced aero-engines using catalytic steam reforming of hydrocarbon fuels
Yu Feng,
Yuna Liu,
Yong Cao,
Keyu Gong,
Shuyuan Liu and
Jiang Qin
Energy, 2020, vol. 193, issue C
Abstract:
The wall catalytic steam reforming (WCSR) is expected to be used in chemical recuperative cycle of scramjet because of its high chemical heat sink and low coke deposition. Therefore, a numerical model is established and validated based on experiments to improve utilization of chemical heat sink, generated from WCSR at supercritical pressures. The numerical results indicate that a maximal value exists at the axial distribution of chemical heat sink under the combined influence of endothermic and exothermic reactions in WCSR. The chemical heat sink increases to the maximal value, and then decreases after it. The radial chemical heat sink is of layer distribution. According to the fundamental numerical study on influence of key parameters on the WCSR, the results indicate that the maximal value of chemical heat sink has reduced by 15% as operation pressure increases from 3 MPa to 5 MPa, which is distinctly different from that of pyrolysis. As velocity decreases, the maximal value of chemical heat sink moves toward inlet and the total chemical heat decreases. In addition, the chemical heat sink increases with inlet water content, and the maximal value of chemical heat sink has increased by about 50% as inlet water content increases from 5% to 10%.
Keywords: Thermal management; Wall catalytic steam reforming; Chemical heat sink; Hydrocarbon fuel; Chemical recuperative cycle (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544219324338
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:193:y:2020:i:c:s0360544219324338
DOI: 10.1016/j.energy.2019.116738
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().