EconPapers    
Economics at your fingertips  
 

The effect of sinusoidal wall on hydrogen jet mixing rate considering supersonic flow

Zhixiong Li, Tran Dinh Manh, Mostafa Barzegar Gerdroodbary, Nguyen Dang Nam, R. Moradi and Houman Babazadeh

Energy, 2020, vol. 193, issue C

Abstract: The efficiency of the scramjet is highly associated with the rate of the mixing through the combustion tank. In current article, simulation approach was used to inspect the effect of the sinusoidal wall on hydrogen mixing cross-flow jet. The key focus of current paper is to exhibit the role of various sinusoidal profiles on the flow structure and streamline pattern of the mainstream and fuel jet. To simulate the flow feature, a 3D model was chosen and Navier-stocks equations were solved with energy and species mass transport equations to evaluate the mixing rate of hydrogen jet. Hydrogen gas is injected through the nozzle in the downstream of the sinusoidal wave. The impact of total jet pressure on the flow feature is exclusively studied. Also, the mixing zones of the various models are compared. Attained results display that the appearance of the wavy wall augments the mixing rate when the frequency of the sinusoidal wave is high enough. Our findings also reveal that using extended surface has less effect in high pressure condition. The comparison of the mixing rate shows that the presence of sinusoidal wavy wall with frequency of 1200 increases the mixing rate more than 25% than simple flat surface.

Keywords: Upstream wavy wall; Scramjet; Fuel spreading; Hydrogen jet; Fuel mixing; Combustion chamber (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (9)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S036054421932496X
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:193:y:2020:i:c:s036054421932496x

DOI: 10.1016/j.energy.2019.116801

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:193:y:2020:i:c:s036054421932496x