The challenge of solar powered combined cycles – Providing dispatchability and increasing efficiency by integrating the open volumetric air receiver technology
Fritz Zaversky,
Iñigo Les,
Patxi Sorbet,
Marcelino Sánchez,
Benoît Valentin,
Jean-Florian Brau and
Frédéric Siros
Energy, 2020, vol. 194, issue C
Abstract:
This work analyzes the performance potential of solar-only powered combined cycles, comparing the impact of two different solar receiver technologies (opaque-heat-exchanger-type vs. volumetric). Due to material and receiver performance constraints, as well as the absence of internal combustion, the gas turbine inlet temperature (TIT) is limited to considerably lower values than observed in current fossil-fired state-of-the-art combined cycle plants. Therefore, the analysis includes the evaluation of a reheated topping Brayton cycle, aiming for a higher mean temperature of the heat input, thereby allowing fair conversion efficiencies despite moderate TITs. An extensive parametric optimization analysis compares different solar combined cycle configurations and benchmarks them against conventional CSP single-cycle plants. High thermal losses in the receiver tend to offset the gain allowed by the power cycle. The innovative coupling of an open volumetric air receiver with a regenerative heat exchange system that works in alternating operating modes (non-pressurized heating period, pressurized cooling period) could be a promising solution to efficiently drive a solar powered combined cycle. Furthermore, the optimum solar combined cycle performance for typical mean concentration ratios (C ≈ 500) is fully compatible with high temperature TES, providing the promising possibility of fully dispatchable operation at highest thermal-to-electric conversion efficiency.
Keywords: Solar combined cycle; Reheated gas turbine; Volumetric receiver (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (6)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544219324910
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:194:y:2020:i:c:s0360544219324910
DOI: 10.1016/j.energy.2019.116796
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().