EconPapers    
Economics at your fingertips  
 

Optimization of the thermodynamic configurations of a thermoacoustic engine auxiliary power unit for range extended hybrid electric vehicles

Wissam Bou Nader, Joy Chamoun and Clément Dumand

Energy, 2020, vol. 195, issue C

Abstract: Significant research efforts are considered in the automotive industry on the use of low carbon alternative fuels in order to reduce carbon emissions of future vehicles, some of which are only compatible with external combustion machines. These machines are only suitable for electrified powertrains relying on electric propulsion, particularly in range extenders, where the energy converter operates steadily at a constant power at its optimal efficiency. The fuel consumption of these powertrains strongly relies on the performance of the energy converter in terms of efficiency, as well as on the deployed energy management strategy. This paper investigates the potential of fuel savings of a Extended Range hybrid Electric Vehicle (EREV) using a Thermoacoustic Engine (TAE) system as energy converter substitute to the conventional Internal Combustion Engine (ICE). An exergo-technological explicit analysis is conducted to identify the different TAE-system thermodynamic configurations. The Regenerative Reheat two-stage thermoacoustic engine is selected among numerous identified thermodynamic configurations, offering high efficiency and net specific work compared to other configurations.

Keywords: Thermoacoustic engine; Exergy analysis; Thermodynamic optimization; Extended range hybrid electric vehicles; Fuel consumption (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544220300591
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:195:y:2020:i:c:s0360544220300591

DOI: 10.1016/j.energy.2020.116952

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:195:y:2020:i:c:s0360544220300591