Economics at your fingertips  

China’s energy consumption in construction and building sectors: An outlook to 2100

Guangyue Xu and Weimin Wang

Energy, 2020, vol. 195, issue C

Abstract: As China takes great efforts to cap its total energy consumption, it is important to understand the future energy use in all sectors. This paper aims to present a long-term prediction of energy use in China’s construction and building sectors (CBS) up to the year 2100. A STIRPAT (Stochastic Impacts by Regression on Population, Affluence, and Technology) model is used to establish the relationship between six socioeconomic and technological factors and China’s CBS energy consumption. Based on the statistical data from 2000 to 2016, ridge regression is applied to derive the coefficients of the STIRPAT model to counter the impact of multicollinearity on regression results. The projections are performed for three scenarios: a benchmark scenario, an intensive scenario, and an extensive scenario. The results show that for all three scenarios, the overall trend of China’s CBS energy consumption is to continuously increase from the present, reach a peak in the range between 1155 and 1243 million tons of standard coal equivalent (Mtce) in 2050, and then decrease to 942–1116 Mtce in 2100. The above projection and the associated STIRPAT model are valuable for developing policies on construction and buildings to control the total energy use in China.

Keywords: Buildings; China; Construction; Energy projection; Ridge regression; Scenario analysis (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1) Track citations by RSS feed

Downloads: (external link)
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link:

DOI: 10.1016/

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Haili He ().

Page updated 2020-06-13
Handle: RePEc:eee:energy:v:195:y:2020:i:c:s0360544220301523