Intelligent predictive control of large-scale solvent-based CO2 capture plant using artificial neural network and particle swarm optimization
Xiao Wu,
Jiong Shen,
Meihong Wang and
Kwang Y. Lee
Energy, 2020, vol. 196, issue C
Abstract:
This paper develops an intelligent predictive controller (IPC) for a large-scale solvent-based post-combustion CO2 capture (PCC) process. An artificial neural network (NN) model is trained to represent the dynamics of the PCC process based on an in-depth behavior investigation of the process under different operating conditions. The resulting NN model can portray the PCC characteristics very well in terms of dynamic trend, response time and steady-state gain. An intelligent predictive controller is thus developed based on the NN model to track the desired CO2 capture level and maintain the given re-boiler temperature, in which the particle swarm optimization (PSO) algorithm is applied to find the best future control sequence for the PCC process. A warm start scheme is proposed in the IPC to improve the quality of initial swarm in the PSO. Dynamic simulations to change CO2 capture level set-point and flue gas flow rate are carried out on the PCC process. The results show that the IPC can adjust CO2 capture level fast and significantly reduce the fluctuations in re-boiler temperature. It is concluded that the proposed IPC is helpful for flexible operation of the solvent-based PCC process.
Keywords: Solvent-based post-combustion carbon capture; Model predictve control; Artificial neural network; Particle swarm optimization; Flexible operation (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (13)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544220301778
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:196:y:2020:i:c:s0360544220301778
DOI: 10.1016/j.energy.2020.117070
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().