New method for quickly measuring the maximum conversion power of a thermoelectric module/generator
Junling Gao,
Kechen Tang,
Yonggao Yan and
Shimin Zhang
Energy, 2020, vol. 197, issue C
Abstract:
Maximum output power (Pomax) is the main characteristic parameter of energy conversion of a thermoelectric module (TEM)/generator (TEG). To obtain this parameter, the module’s dynamic internal resistance under the actual operating condition must be accurately determined to realize load matching. Our theoretical analysis reveals that the dynamic internal resistances are almost identical when the module achieves three stable operating conditions, i.e., maximum power output, open circuit, and short circuit, with stable temperature differences between the cold and hot sides. Based on this conclusion, a new method to quickly and accurately acquire the Pomax of a TEM using thermal inertia, open-circuit voltage, and short-circuit current is proposed. This method can quickly determine the TEM dynamic internal resistance at Pomax, which can be set as the load, to directly achieve dynamic matching between load and internal resistance. This is the first study that reports the Pomax of a TEM/TEG with only one measurement; this can significantly reduce the time spent using the traditional method, which requires multiple measurements with varying loads. The experiment verified the high accuracy and low error (less than 1%) of the method.
Keywords: Thermoelectric module; Dynamic internal resistance; Maximum output power; Load matching (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544220302607
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:197:y:2020:i:c:s0360544220302607
DOI: 10.1016/j.energy.2020.117153
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().