EconPapers    
Economics at your fingertips  
 

Fault diagnosis of gas turbine based on partly interpretable convolutional neural networks

Dengji Zhou, Qinbo Yao, Hang Wu, Shixi Ma and Huisheng Zhang

Energy, 2020, vol. 200, issue C

Abstract: The fault diagnosis of gas turbines plays a vital role in engine reliability and availability. The data-driven diagnostic model has been verified useful for identifying and characterizing engine degradation. But Convolution Neural Networks (CNN) is considered to perform poorly in the fault diagnosis for time-series signals. And most of the studies do not involve the interpretability of CNN, leading model hard to be optimized and integrated with physical mechanisms. For the fault diagnosis of the gas turbines, strong coupling often exists between gas path faults and sensor faults, making fault diagnosis difficult when both faults occur simultaneously. A novel method is proposed to improve the performance of typical CNN through optimizing the influence of input measurement parameter sequencing. Extreme Gradient Boosting (XGBoost) is used to make the effects of the sequencing on CNN diagnostic accuracy interpretable. In the simulation experiment, the diagnostic accuracy of CNN after optimization is 95.52%, higher than that of conventional CNN (accuracy rate 91.10%), RNN (accuracy rate 94.21%) and other methods. For the analysis of field data, the new method has shown stronger feature extraction ability and can detect typical gas path faults in advance. The new method performs well in precision, stability, and comprehensibility.

Keywords: Gas turbine; Fault diagnosis; Convolutional neural network; Extreme gradient boosting; Interpretation; Field data (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (26)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544220305740
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:200:y:2020:i:c:s0360544220305740

DOI: 10.1016/j.energy.2020.117467

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:200:y:2020:i:c:s0360544220305740