Combined steam/dry reforming of bio-oil for H2/CO syngas production with blast furnace slag as heat carrier
Huaqing Xie,
Rongquan Li,
Zhenyu Yu,
Zhengyu Wang,
Qingbo Yu and
Qin Qin
Energy, 2020, vol. 200, issue C
Abstract:
Combined steam/dry reforming of bio-oil with blast furnace slag as heat carrier for the syngas production with the H2/CO ratio of 3:1 for further methanation, was investigated. The increase of H2O addition can increase the total yield of H2 and CO, but also increase the critical temperature at which 3:1-H2/CO syngas was obtained, while the increase of CO2 addition can decrease the critical temperature, but the syngas yield was also decreased. When the steam/carbon (S/C) ratio was 3.0 and the CO2/carbon (CO2/C) ratio was 0.5, the critical temperature decreased to 804 °C, with the potential H2 yield of over 90%. Although the addition of slag and how much slag to be added had almost no any thermodynamic effect on the combined reforming of bio-oil under the condition where higher potential H2 yield can be obtained, the slag as heat carrier could supply all heat for the combined reforming process. When the added slag mass was 3.99 times bio-oil mass, the combined reforming at the S/C ratio of 3.0 and the CO2/C ratio of 0.5 can occur spontaneously for the production of 3:1-H2/CO syngas. The present study could offer important guidance toward utilization of this novel process for further methanation.
Keywords: Bio-oil; Reforming; Blast furnace slag; H2/CO syngas; Methanation; Thermodynamic analysis (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (6)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544220305880
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:200:y:2020:i:c:s0360544220305880
DOI: 10.1016/j.energy.2020.117481
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().