Application of double glazed façades with horizontal and vertical louvers to increase natural air flow in office buildings
Nasrin Pourshab,
Mehdi Dadkhah Tehrani,
Davood Toghraie and
Sara Rostami
Energy, 2020, vol. 200, issue C
Abstract:
The results of previous researches clearly indicate that the main concern in applying double skin façades (DSF) is overheating of the cavity and increasing the cooling energy consumption in warm seasons. The present study intends to consider the excessive heat trapped between two skins of double glazed façades in hot arid climates as a driving force to reinforce the natural airflow across the floors of an office building. To meet this purpose, numerical simulation of airflow and heat transfer inside the cavity of the double glazed façades and the adjacent floors, as well as the effect of different types of solar shading systems in horizontal and vertical modes on the airflow has been investigated using the CFD technique. The results show that the stack effect formed inside the cavity has enough power for air suction from the floors of the building and reinforcement of the natural airflow. The type of shading device has a significant effect on the airflow behavior and the heat transfer rate in the facade. In double skin facades with horizontal louvers, the buoyancy forces inside the cavity are stronger and the ventilation rate in the building floors is higher than the model with vertical louvers. On the other hand, due to the stronger convective flow in the cavity with horizontal louvers, the heat flux on the interior glass is higher than the cavity with vertical louvers and part of the heat inside the cavity is transmitted through the interior skin to the occupied spaces.
Keywords: Double skin façade; Natural airflow; Overheating; Radiation heat transfer; Computational fluid dynamics; Solar shading systems; Thermal performance (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (10)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544220305934
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:200:y:2020:i:c:s0360544220305934
DOI: 10.1016/j.energy.2020.117486
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().