EconPapers    
Economics at your fingertips  
 

Multi-mode operation of a Liquid Air Energy Storage (LAES) plant providing energy arbitrage and reserve services – Analysis of optimal scheduling and sizing through MILP modelling with integrated thermodynamic performance

Andrea Vecchi, James Naughton, Yongliang Li, Pierluigi Mancarella and Adriano Sciacovelli

Energy, 2020, vol. 200, issue C

Abstract: Energy storage competitiveness is ubiquitously associated with both its technical and economic performance. This work investigates such complex techno-economic interplay in the case of Liquid Air Energy Storage (LAES), with the aim to address the following key aspects: (i) LAES optimal scheduling and how this is affected by LAES thermodynamic performance (ii) the effect of LAES sizing on its profitability and performance (iii) overall techno-economic assessment of LAES multi-mode operation when providing energy and reserve services. To address these aspects, a Mixed Integer Linear Programming-based optimisation tool has been developed to simulate LAES operation throughout a year while including detailed thermodynamic constraints, thus allowing an accurate performance estimation. The results demonstrate that considering LAES thermodynamic performance in the optimisation ensures a feasible dispatch profile thus avoiding loss of revenues, especially for the multi-mode cases. However, while operation with arbitrage and a portfolio of reserve services is financially promising, it also deteriorates LAES roundtrip efficiency; therefore, a techno-economic balance should be sought. In terms of design, the possibility of independently sizing LAES charge and discharge power is key for tailoring the plant to the specific operating mode. Furthermore, storage energy capacities greater than 2–3 h do not significantly increase LAES profitability under the market conditions considered.

Keywords: Liquid air energy storage; Mixed integer linear programming; Thermodynamic performance; Reserve services; Techno-economic assessment; Energy storage (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (9)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544220306071
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:200:y:2020:i:c:s0360544220306071

DOI: 10.1016/j.energy.2020.117500

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:200:y:2020:i:c:s0360544220306071