EconPapers    
Economics at your fingertips  
 

Performance analysis of the sky radiative and thermoelectric hybrid cooling system

Trevor Hocksun Kwan, Bin Zhao, Jie Liu and Gang Pei

Energy, 2020, vol. 200, issue C

Abstract: In this paper, the radiative sky cooler (RSC) and thermoelectric cooler (TEC) are integrated to form the RSC-TEC hybrid cooling system that can reduce the TEC required power consumption and increase the system’s cooling capacity over a standalone RSC. Specifically, a feasibility study is conducted to evaluate the design and working conditions that allow this system to have superior performance; For example, the TEC module type and number, RSC surface area and radiative emissivity value, solar absorption coefficient and air convective heat transfer coefficient have been parametrically swept to assess their effects on the system’s cooling capacity and the TEC power saving coefficient, a metric to define the degree of TEC power consumption reduction due to the RSC. The analyzes have been conducted through a non-dimensional steady-state mathematical model of the hybrid system that cools an enclosed space. Results demonstrate that a 0.1 m2 RSC could reduce the required power consumption of a TEC module (size 4 cm by 4 cm) by up to 10%. Moreover, increasing the RSC surface area further improved the TEC power saving coefficient, but the solar absorption coefficient had to be under 0.02 to maintain a reasonable TEC power saving coefficient.

Keywords: Hybrid cooling system; Parametric analysis; Power savings; Radiative sky cooler; Thermoelectric cooler (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (8)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S036054422030623X
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:200:y:2020:i:c:s036054422030623x

DOI: 10.1016/j.energy.2020.117516

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:200:y:2020:i:c:s036054422030623x