A numerical study on the quasi-steady spray and soot characteristics for soybean methyl ester and its blends with ethanol using CFD-reduced chemical kinetics approach
Xinwei Cheng,
Suyin Gan and
Hoon Kiat Ng
Energy, 2020, vol. 200, issue C
Abstract:
This work numerically examines the quasi-steady spray combustion and soot development for soybean methyl ester (SME) and SME-ethanol blends (S90E10, S70E30). A validated reduced ethanol mechanism (37 species and 149 reactions) was formulated using a temperature sensitivity analysis under auto-ignition and jet-stirred reactor conditions. At initial pressures between 10.0 bar and 60.0 bar, initial temperatures between 750 K and 1350 K and equivalence ratios between 0.5 and 2.0, the ignition delays and key species profiles (C2H5OH, CO2, O2) of the reduced mechanism deviated by 0.5 order and 40%, respectively as compared to the experimental measurements. Subsequently, the reduced ethanol mechanism was combined with a reduced biodiesel mechanism to form a surrogate mechanism (102 species and 446 reactions) for biodiesel-ethanol blends and integrated into OpenFOAM for spray combustion modelling. Under reacting spray conditions at a constant ambient density of 22.8 kg/m3 and ambient temperatures of 900 K and 1000 K, the spray penetrations for SME-ethanol blends were shortened by 35.5% (maximum difference). Smaller flame areas with 60 K higher local flame temperature were obtained. Due to a 20% decrease in acetylene mass fractions and soot formation rates, the peak soot volume fractions for SME-ethanol blends were 19.6% lower.
Keywords: Ethanol; Reduced chemical kinetics; SME; Soot; Spray combustion (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544220306472
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:200:y:2020:i:c:s0360544220306472
DOI: 10.1016/j.energy.2020.117540
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().