Techno-economic evaluation of the novel hot air recirculation process for exhaust heat recovery from a 600 MW hard-coal-fired boiler
Youfu Ma,
Ziwen Wang,
Junfu Lyu and
Zirui Wang
Energy, 2020, vol. 200, issue C
Abstract:
To increase the efficiency of thermal power plants, we have recently proposed and analyzed a novel exhaust heat recovery process called hot air recirculation (HAR), applied to a brown-coal-fired power unit as a test case. However, the performance of HAR, applied to a hard coal-fired power unit, is not clearly understood yet. In this study, the HAR process was redesigned to match the actual supply air and flue gas layout of a hard-coal-fired boiler. The thermo- and techno-economic performances of HAR, as well as the conventional bypass flue (CBF) process, applied to a 600 MW hard-coal-fired power unit, were analyzed in detail. The results indicate that, when the boiler exhaust heat is recovered from 122 to 90 °C, the net coal savings, initial capital cost, and payoff period of HAR are 3.49 g/(kW·h), $1.473 million, and 1.34 years, respectively, whereas those of CBF are 2.98 g/(kW·h), $2.528 million, and 3.04 years, respectively. Therefore, it is established that HAR can benefit a hard-coal-fired power plant with a greater saving on coal consumption and a more economical project investment, in addition to providing a safe and reliable operation, as compared to similar processes.
Keywords: Thermal power plant; Utility boiler; Waste heat recovery; Hard coal; Hot air recirculation (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544220306654
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:200:y:2020:i:c:s0360544220306654
DOI: 10.1016/j.energy.2020.117558
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().