EconPapers    
Economics at your fingertips  
 

Parametric study of absorption refrigeration with vapor compression refrigeration cycle using wet, isentropic and azeotropic working fluids: Conventional and advanced exergy approach

Abid Ustaoglu

Energy, 2020, vol. 201, issue C

Abstract: Advanced exergy analysis was carried out for absorption-compression refrigeration-cycles with a working fluid selection and parametric analysis. The exergy-destruction was split into endogenous-exogenous and avoidable-unavoidable-parts to reveal the interdependency within the components and determine the improvement potential. The results show that the largest exergy-destruction occurs in the generator, accounting for 53.8% of the total destruction. The largest irreversibility occurs for R507a/NH3–H2O while the lowest destruction occurs for R152a/NH3–H2O with an approximate reduction of 0.62 kW. The largest irreversibility occurs in the azeotropic-fluids while the lowest occurs in wet fluids. More than one-half of overall exergy-destruction rates of the systems falls into the part of the avoidable-destruction with 52.5% of overall irreversibility. The major part of the avoidable-destruction occurs in the generator with 11.47 kW and it accounts for 57.8% of the total avoidable part, meaning that it has the highest improvement potential. The parametric analysis of the advanced exergy shows that the avoidable-part of the exergy-destruction can be minimized to a considerable extent employing a temperature of the condenser below 40 °C and generator temperature larger from 100 °C.

Keywords: Advanced exergy; Endogenous/exogenous; Avoidable/unavoidable; Absorption-compression cascade-refrigeration (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (8)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544220305983
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:201:y:2020:i:c:s0360544220305983

DOI: 10.1016/j.energy.2020.117491

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:201:y:2020:i:c:s0360544220305983