Performance improvement of a transonic centrifugal compressor impeller with splitter blade by three-dimensional optimization
Khalil Ekradi and
Ali Madadi
Energy, 2020, vol. 201, issue C
Abstract:
This paper presents a procedure for three-dimensional optimization of a transonic centrifugal compressor impeller with splitter blades by integrating 3D blade parameterization method, a genetic algorithm (GA), an artificial neural network, and a CFD solver. Because computational fluid dynamics (CFD) is a time-consuming method, an artificial neural network is coupled with GA to evaluate the objective function. SRV2-O, a typical high-pressure ratio centrifugal impeller, is selected as the test case. A good understanding of flow characteristics in the passage of SRV2-O is obtained using 3D Reynolds Averaged Navier-Stokes solver. Twenty-eight design variables defining the impeller blade angle distribution are used to parametrize the blade geometry. Isentropic efficiency of the impeller is selected as the objective function while the total pressure ratio and mass flow rate are defined as constraints. The optimization results indicate that the performance of the optimum geometry is improved in comparison with the original impeller at both design and off-design conditions. The isentropic efficiency is increased by 0.97% at the design point, and total pressure ratio and mass flow rate are increased by 0.74%, 0.65%, respectively.
Keywords: Centrifugal compressor impeller; Genetic algorithm; Artificial neural network; 3D optimization; Splitter blade (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (7)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544220306897
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:201:y:2020:i:c:s0360544220306897
DOI: 10.1016/j.energy.2020.117582
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().