Synthesis of refinery hydrogen network integrated with hydrogen turbines for power recovery
Xuepeng Liu,
Jian Liu,
Chun Deng,
Jui-Yuan Lee and
Raymond R. Tan
Energy, 2020, vol. 201, issue C
Abstract:
Hydrogen compressors are widely utilized to raise the pressure of hydrogen-rich streams in refineries to satisfy the operating pressure requirements of various hydrogenation units. Pressure relief valves are also placed to reduce the pressure of the hydrogen streams but this leads to a waste of energy. Alternatively, hydrogen turbines may be used in place of pressure relief valves to recover energy. This paper proposes a novel superstructure of a refinery hydrogen network involving hydrogen turbines to recover the expansion work. Such a configuration can be termed a hydrogen/work exchange network. Sequential mathematical models are developed with objective functions including the minimization of the flowrate of hydrogen utility, compression work, total power consumption and total annualized cost. A modified literature case study with five scenarios is solved. Results show that the total power consumption and the total annualized cost can be further reduced by 3.9% and 0.6% by recovering the expansion work of hydrogen-rich streams using hydrogen turbines.
Keywords: Hydrogen network; Hydrogen turbine; Expansion work; Compression work; Optimization; Work exchange network (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544220307301
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:201:y:2020:i:c:s0360544220307301
DOI: 10.1016/j.energy.2020.117623
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().