Reviews of atmospheric water harvesting technologies
Rang Tu and
Yunho Hwang
Energy, 2020, vol. 201, issue C
Abstract:
Atmospheric water harvesting technologies can be classified based on working principles, namely condensation technology, sorption technology and other technologies. Condensation technology utilizes various refrigeration technologies such as vapor compression cycle, thermoelectric cooling and adsorption/absorption cooling for condensing water vapor. Water harvesting processes can be operated as long as electricity is available. For other technologies, it can be further divided into innovative technologies and hybrid technologies. For innovative technologies, renewable energy powered VCC systems, solar chimney and geothermal cooling systems are used. Based on the above three categories, This paper summarizes these water harvesting technologies from perspectives of system configurations, test setups, simulation methods, performances analysis and important findings. Based on current review study, performances and research gaps of these technologies are compared and evaluated, and possible future research for atmospheric water harvesting in humid or dry climate regions are proposed.
Keywords: Atmospheric water harvesting; Water harvesting rate; Power consumptions; Test setup; Simulation methods (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (11)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544220307374
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:201:y:2020:i:c:s0360544220307374
DOI: 10.1016/j.energy.2020.117630
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().