EconPapers    
Economics at your fingertips  
 

Forecasting annual electricity consumption in China by employing a conformable fractional grey model in opposite direction

Wanli Xie, Wen-Ze Wu, Chong Liu and Jingjie Zhao

Energy, 2020, vol. 202, issue C

Abstract: Electric power makes a significant contribution to economic development. Predicting annual electricity consumption is becoming increasingly crucial for electric power utility planning and economic development. To address this problem, a novel conformable fractional grey model in opposite direction is presented to predict annual electricity consumption in China. Firstly, the computational formulas for the novel model are deduced by grey modelling method and the effectiveness of the novel model is proved by matrix perturbation theory. Secondly, the optimal parameters are determined by quantum inspired evolutionary algorithm. Thirdly, two empirical examples are taken to validate the prediction accuracy of the novel model. Finally, the proposed model is applied to predict electricity consumption of Beijing, Fujian and Shandong. The results show that the novel model is superior to other six competitive models. Besides, electricity consumption of these regions in next five years are predicted, which can well serve a benchmark research and provide a relatively reliable reference for economic and electric sectors.

Keywords: Grey model; Conformable fractional accumulation; Quantum inspired evolutionary algorithm; Electricity consumption (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (20)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544220307891
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:202:y:2020:i:c:s0360544220307891

DOI: 10.1016/j.energy.2020.117682

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:202:y:2020:i:c:s0360544220307891