An Internet of Things-enabled model-based approach to improving the energy efficiency of aluminum die casting processes
Weipeng Liu,
Tao Peng,
Renzhong Tang,
Yasushi Umeda and
Luoke Hu
Energy, 2020, vol. 202, issue C
Abstract:
The demand for aluminum products is expected to continually increase. Die casting is an important technology for processing aluminum products. It is energy-intensive and its melting and holding sub-processes consume large amounts of energy, but in low energy efficiency. Therefore, improving their energy efficiency can significantly reduce energy costs and environmental impact. Based on an in-depth field survey of die casting factories, two obstacles hindering the melting and holding energy efficiency improvement were identified: 1) the determination of optimal furnace operation parameters in the production planning stage, and 2) the timely adjustment of furnace operation parameters when an incident occurs in the production stage. An Internet of Things-enabled model-based approach, including a parameter optimization model and energy-aware incident control strategy, was proposed to address these two issues. The proposed approach was validated in a die casting factory. Optimizing the furnace melting rate and maximum holding height saved 5%–9% cost, product stock was reduced by approximately 3.6% with the online adjustment of the furnace melt-stoppage time, and holding energy consumption was reduced by approximately 2% with the online control of the furnace standby mode. It was revealed that the practical value of the proposed approach was significant for industrial applications.
Keywords: Aluminum die casting; Energy efficiency; Parameter optimization; Online control; Internet of things (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (7)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544220308239
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:202:y:2020:i:c:s0360544220308239
DOI: 10.1016/j.energy.2020.117716
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().