Reliability aware multi-objective predictive control for wind farm based on machine learning and heuristic optimizations
Xiuxing Yin,
Xiaowei Zhao,
Jin Lin and
Aris Karcanias
Energy, 2020, vol. 202, issue C
Abstract:
In this paper, a reliability aware multi-objective predictive control strategy for wind farm based on machine learning and heuristic optimizations is proposed. A wind farm model with wake interactions and the actuator health informed wind farm reliability model are constructed. The wind farm model is then represented by training a relevance vector machine (RVM), with lower computational cost and higher efficiency. Then, based on the RVM model, a reliability aware multi-objective predictive control approach for the wind farm is readily designed and implemented by using five typical state of the art meta-heuristic evolutionary algorithms including the third evolution step of generalized differential evolution (GDE3), the multi-objective evolutionary algorithm based on decomposition (MOEA/D), the multi-objective particle swarm optimization (MOPSO), the multi-objective grasshopper optimization algorithm (MOGOA), and the non-dominated sorting genetic algorithm III (NSGA-III). The computational experimental results using the FLOw Redirection and Induction in Steady-state (FLORIS) and under different inflow wind speeds and directions demonstrate that the relative accuracy of the RVM model is more than 97%, and that the proposed control algorithm can largely reduce thrust loads (by around 20% on average) and improve the wind farm reliability while maintaining similar level of power production in comparison with a conventional predictive control approach. In addition, the proposed control method allows a trade-off between these objectives and its computational load can be properly reduced.
Keywords: Wind farm reliability; Predictive control; Relevance vector machine; Evolutionary algorithms (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S036054422030846X
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:202:y:2020:i:c:s036054422030846x
DOI: 10.1016/j.energy.2020.117739
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().