Performance improvement of photovoltaic modules via temperature homogeneity improvement
M. Muneeshwaran,
Uzair Sajjad,
Tanveer Ahmed,
Mohammed Amer,
Hafiz Muhammad Ali and
Chi-Chuan Wang
Energy, 2020, vol. 203, issue C
Abstract:
Though the PV module performance can be enhanced by cooling, the associated temperature non-uniformity across the PV panel can deteriorate its efficiency. In this study, a significant effort is conducted for an air-cooling system that can control the temperature uniformity across the PV panel. The cooling of a rooftop PV module is enabled by the air-conditioning unit installed on the building’s roof. PV panel performance, with and without the cooling, is experimentally investigated for the uniform cold air duct. Experimental results showed that the cooled panel temperature is 6–12 °C lower than that of the uncooled one. However, even with the cooling, the temperature non-uniformity of 4–7 °C was noticed across the PV panel. To improve the temperature uniformity across the module, converging cold air ducts with different area ratios (AR) of 0.667 and 0.333 were designed and analyzed numerically. The effect of inlet air temperature (Tin-air = 18–23 °C) and inlet airflow velocity (U = 2–3 m/s) on panel temperature were also studied. The results suggested that the PV panel with CCD having an AR of 0.333 exhibited a temperature non-uniformity of 1.5–2.5 °C and demonstrated a 17–22% improvement in module efficiency under Tin-air = 18 °C and U = 3 m/s.
Keywords: PV module; Air cooling technique; Panel temperature; Temperature non-uniformity; Converging duct (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544220309233
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:203:y:2020:i:c:s0360544220309233
DOI: 10.1016/j.energy.2020.117816
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().