EconPapers    
Economics at your fingertips  
 

Integrated experimentation and modeling of the formation processes underlying coal combustion-triggered methane explosions in a mined-out area

Lin Li, Botao Qin, Jishan Liu and Yee-Kwong Leong

Energy, 2020, vol. 203, issue C

Abstract: A methane explosion can take place when a methane concentration is within the explosive concentration range. Therefore, the methane migration around a coal combustion zone is important for assessing the disaster risk and revealing the disaster formation process. The thermal buoyancy effect has seldom been considered before, even though it could influence methane movement in coal mined-out areas. In this study, an integrated investigation using experimentation and modeling was conducted to explore the disaster formation process. For the experiment, a coal mine gob was heated locally to produce the buoyancy effect, and the consequent methane accumulation was observed. To explain this observation, a gas flow model reflecting the buoyancy effect was developed and verified against the experimental observations. Through this analysis, the formation processes for a methane explosion disaster in a coal mined-out area were revealed as follows: (1) coal combustion decreases the gas density to produce the buoyancy effect and create negative pressure in the combustion area; (2) this negative pressure leads to methane inflow, and the buoyancy effect causes upward methane movement; and (3) the local methane inflow and the local upward movement develop methane accumulation in the coal combustion area to form a methane explosion.

Keywords: Coal combustion; Methane accumulation; Buoyancy effect; Negative pressure; Methane explosion (search for similar items in EconPapers)
Date: 2020
References: View complete reference list from CitEc
Citations: View citations in EconPapers (11)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544220309622
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:203:y:2020:i:c:s0360544220309622

DOI: 10.1016/j.energy.2020.117855

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:203:y:2020:i:c:s0360544220309622