Experimental investigation of ionic liquids as substitute for lithium bromide in water absorption chillers
Roland Kühn,
Thomas Meyer and
Felix Ziegler
Energy, 2020, vol. 205, issue C
Abstract:
Ionic liquids (ILs) have been proposed as alternative absorbents for absorption chillers, e.g. to cope with crystallization. Since there is a huge amount of different ILs available, it seems to be convenient to choose a suitable IL for an absorption chiller not by experimental trials but rather by theoretical modeling. However, the model’s results must be validated with experimental data to evaluate their prediction quality. In the paper at hand the performance of three different ILs ([Choline][OAc], [emim][Cl], [mmim][EtCO2]) and lithium bromide is compared experimentally in a fully operable absorption chiller with water as the refrigerant. The cooling capacity, the coefficient of performance, the specific circulation ratio of the chiller and the heat transfer capability of the absorber are determined. When using LiBr, the highest cooling capacity is achieved, and the highest heat transfer coefficients and presumably the least mass transfer resistance are present. The experimental data show that equilibrium state simulations will lead to completely erroneous results. Neither LiBr nor the ILs come close to their equilibrium state and differences amongst the investigated absorbents are huge. It furthermore seems almost impossible to choose suitable ILs for absorption chillers by investigating isolated physical properties.
Keywords: Absorption chiller; Experimental investigation; Ionic liquids; Heat transfer coefficients; Power density (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544220310975
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:205:y:2020:i:c:s0360544220310975
DOI: 10.1016/j.energy.2020.117990
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().