Experimental investigation of solar photovoltaic panel integrated with phase change material and multiple conductivity-enhancing-containers
Preeti Singh,
Vijay Mudgal,
Sourav Khanna,
Tapas K. Mallick and
K.S. Reddy
Energy, 2020, vol. 205, issue C
Abstract:
Among all passive methods for photovoltaics (PV) cooling, phase change material (PCM) can be highly effective due to high latent heat capacity. However, very low thermal-conductivity of PCM restricts its potential. The proposed work focuses on the enhancement of rate of heat transfer from PV to PCM by using conductivity-enhancing-containers. The proposed approach was experimented outdoor and compared with the reference panel for different seasons at Chennai, India. PV temperature, open circuit voltage, short circuit current, Current-Voltage (I–V) and Power-Voltage (P–V) curves, fill-factors, power outputs, efficiency and daily electricity generation are reported. The results show that the proposed heat sink was able to decrease the maximum PV temperature from 64.4 °C to 46.4 °C for January and 77.1 °C to 53.8 °C for June. It increased the open circuit voltage of PV from 24.3 V to 26.4 V for January and 23.6 V to 26.0 V for June. The fill-factor increased from 0.678 to 0.705 for January. Consequently, the electrical efficiency increased from 9.5% to 10.5% during noon. Daily electricity generation increased from 769 Wh/day to 817 Wh/day during January and 948 Wh/day to 1026 Wh/day during June. Thus, daily electricity generation increased by 6.2% for January and 8.3% for June using proposed approach.
Keywords: Photovoltaic panel; Phase change material; Temperature regulation (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (6)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544220311543
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:205:y:2020:i:c:s0360544220311543
DOI: 10.1016/j.energy.2020.118047
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().